当前的大模型训练还是阶段式的,OpenAI每隔几个月就会对模型进行重新训练,延长模型的世界知识截止时间。说白了就是全新、覆盖式的知识写入。就像西西弗斯推石头,每次全量训练都意味着对先前知识的系统性遗忘。而真正意义上的持续学习和试试学习,当前似乎还是个未解之谜。当然也有观点认为有机体的进化,本身就和无机体的进化存在完全不同的路径,所以大模型是否真的需要持续学习,不少人也是打问号的。
解密prompt系列52. 闲聊大模型还有什么值得探索的领域
未经允许不得转载:小狮博客 » 解密prompt系列52. 闲聊大模型还有什么值得探索的领域
相关推荐
- AD 横向移动-LSASS 进程转储
- C#/.NET/.NET Core技术前沿周刊 | 第 41 期(2025年6.1-6.8)
- 现代 Python 包管理器 uv
- ArkUI-X与Android桥接通信之方法回调
- 商品中心—2.商品生命周期和状态的技术文档
- Benchmark论文解读:Evaluating the Ripple Effects of Knowledge Editing in Language Models
- WineHQ 发布的 Framework Mono 6.14 的这个特性对Windows Forms 用户来说肯定很感兴趣
- 不写一行代码 .NET 使用 FluentCMS 快速构建现代化内容管理系统(CMS)