逻辑回归模型(Logistic Regression,LR),由名称上来看,似乎是一个专门用于解决回归问题的模型,事实上,该模型更多地用于解决分类问题,尤其是二分类问题。这并不矛盾,因为逻辑回归直接输出的是一个连续值,我们将其按值的大小进行切分,不足一定范围的作为一个类别,超过一定范围的作为一个类别,这样就实现了对分类问题的解决。概况来说就是,先对数据以线性回归进行拟合,输出值以Sigmoid函数进行映射,映射到0和1之间,最后将S曲线切分上下两个区间作为类别区分的依据。
逻辑回归模型(Logistic Regression,LR),由名称上来看,似乎是一个专门用于解决回归问题的模型,事实上,该模型更多地用于解决分类问题,尤其是二分类问题。这并不矛盾,因为逻辑回归直接输出的是一个连续值,我们将其按值的大小进行切分,不足一定范围的作为一个类别,超过一定范围的作为一个类别,这样就实现了对分类问题的解决。概况来说就是,先对数据以线性回归进行拟合,输出值以Sigmoid函数进行映射,映射到0和1之间,最后将S曲线切分上下两个区间作为类别区分的依据。