随着Python语言在机器学习领域的大力推广,Python编程对于众多的科技工作者而言总是一个较为靠前的选项。所以不论使用何种方式构建自己的项目,一般我们都会选择面向用户开放一个Python的API接口。如果做一个项目,项目的本身对于程序性能的要求并不高的情况下,我们可以直接使用Python进行相关的计算。但如果对计算性能要求比较高,那么C/CUDA会是一个更好的选择。那么剩下一个待解决的问题就是,如何构建Python API与C/CUDA之间的交互。其实这里本身有两个方案:1. 直接把C/CUDA代码编译成
*.so
动态链接库,然后在Python中加载动态链接库的函数作为接口。2. 只用C/CUDA执行计算,把C/CUDA代码编译成
*.so
动态链接库,从Cython中对两者函数进行调度和管理。
使用Cython调用CUDA Kernel函数
未经允许不得转载:小狮博客 » 使用Cython调用CUDA Kernel函数
相关推荐
- AD 横向移动-LSASS 进程转储
- C#/.NET/.NET Core技术前沿周刊 | 第 41 期(2025年6.1-6.8)
- 现代 Python 包管理器 uv
- ArkUI-X与Android桥接通信之方法回调
- 商品中心—2.商品生命周期和状态的技术文档
- Benchmark论文解读:Evaluating the Ripple Effects of Knowledge Editing in Language Models
- WineHQ 发布的 Framework Mono 6.14 的这个特性对Windows Forms 用户来说肯定很感兴趣
- 不写一行代码 .NET 使用 FluentCMS 快速构建现代化内容管理系统(CMS)