我们提出了第一个鲁棒和可推广的DNN后门攻击检测和缓解系统。我们的技术可以识别后门并重建可能的触发因素。我们通过输入过滤器、神经元修剪和遗忘来识别多种缓解技术。我们通过对各种DNNs的广泛实验证明了它们的功效,而不是先前工作中确定的两种后门注射方法。我们的技术也被证明对后门攻击的许多变体是稳健的。
论文解读《Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks》
未经允许不得转载:小狮博客 » 论文解读《Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks》
相关推荐
- AD 横向移动-LSASS 进程转储
- C#/.NET/.NET Core技术前沿周刊 | 第 41 期(2025年6.1-6.8)
- 现代 Python 包管理器 uv
- ArkUI-X与Android桥接通信之方法回调
- 商品中心—2.商品生命周期和状态的技术文档
- Benchmark论文解读:Evaluating the Ripple Effects of Knowledge Editing in Language Models
- WineHQ 发布的 Framework Mono 6.14 的这个特性对Windows Forms 用户来说肯定很感兴趣
- 不写一行代码 .NET 使用 FluentCMS 快速构建现代化内容管理系统(CMS)