这一架构目前广泛应用于各类 AI 业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽然 RAG 通过知识增强一定程度上缓解了 LLM 幻觉问题,但是依然面临准确度不高的问题,它受限于信息检索流程固有的限制(比如信息检索相关性、搜索算法效率、Embedding模型)以及大量对 LLM 能力依赖,使得在生成结果的过程中有了更多的不确定性。
更强的RAG:向量数据库和知识图谱的结合
未经允许不得转载:小狮博客 » 更强的RAG:向量数据库和知识图谱的结合
相关推荐
- AD 横向移动-LSASS 进程转储
- C#/.NET/.NET Core技术前沿周刊 | 第 41 期(2025年6.1-6.8)
- 现代 Python 包管理器 uv
- ArkUI-X与Android桥接通信之方法回调
- 商品中心—2.商品生命周期和状态的技术文档
- Benchmark论文解读:Evaluating the Ripple Effects of Knowledge Editing in Language Models
- WineHQ 发布的 Framework Mono 6.14 的这个特性对Windows Forms 用户来说肯定很感兴趣
- 不写一行代码 .NET 使用 FluentCMS 快速构建现代化内容管理系统(CMS)