Bagging(Bootstrap Aggregating)算法即自助聚合算法,是一种基于统计学习理论的集成学习算法,主要用于提高机器学习模型的稳定性和泛化能力。具体来说就是,先以Bootstrap方式(有放回重复采样)构造多个样本集,每个样本集分别训练得到一个学习器,最后将各学习器的输出综合起来,得到一个最终的输出,如果是分类,多采用多数投票的方式,如果是回归,采用取平均的方式,代表性算法如随机森林。
Bagging、Boosting、Stacking的原理
未经允许不得转载:小狮博客 » Bagging、Boosting、Stacking的原理
相关推荐
- AD 横向移动-LSASS 进程转储
- C#/.NET/.NET Core技术前沿周刊 | 第 41 期(2025年6.1-6.8)
- 现代 Python 包管理器 uv
- ArkUI-X与Android桥接通信之方法回调
- 商品中心—2.商品生命周期和状态的技术文档
- Benchmark论文解读:Evaluating the Ripple Effects of Knowledge Editing in Language Models
- WineHQ 发布的 Framework Mono 6.14 的这个特性对Windows Forms 用户来说肯定很感兴趣
- 不写一行代码 .NET 使用 FluentCMS 快速构建现代化内容管理系统(CMS)