火灾作为威胁公共安全与生产安全的重大隐患,其早期检测与及时预警是降低灾害损失的关键环节。当前,传统火焰检测方法主要依赖人工监控或单一传感器(如温度、烟雾传感器),前者受限于人力精力易出现漏判误判,后者仅能感知局部物理信号,难以直接识别火焰形态特征,且在复杂场景(如强光反射、小目标远距离成像、多遮挡干扰)下检测效能显著下降。随着计算机视觉技术的发展,基于深度学习的目标检测算法为火焰检测提供了新路径,其中 YOLO 系列算法因兼顾实时性与检测精度,成为该领域的主流技术方案。然而,现有基于 YOLO 的火焰检测系统仍存在诸多应用瓶颈:部分系统操作依赖代码交互,非专业用户难以快速上手;功能模块分散,检测、模型管理、用户权限控制等环节割裂,缺乏一体化设计;参数调节(如置信度、交并比)的交互界面不直观,难以适配不同场景需求;此外,模型训练与推理流程分离,用户难以基于自有数据优化模型性能,限制了系统的灵活性与扩展性。
小狮博客